シミュレーションモデル適用事例シート

ノ ヘユレ	ーションモー			e s. sterre					
	大分類	交通施策			交通制御	シミュレーションモデ	ル名	SOUND-arterial	
	適用事例名	沖縄サミット開催時における交通規制の影響評価について							
	目的・概要	沖縄県警察本部では、サミット開催中、各国首脳が円滑かつ安全に移動できるように大規模な交通規制を計画している。交通渋滞対策として交通総量抑制を挙げており、県民の理解と協力を得るため、交通シミュレーションを行うことにより交通総量抑制の影響評価を行った。							
	本事例における モデル適用上 の特徴								
	対象範囲	沖縄県那覇市(約 7k	n×約8km) 対象時間帯 2000年7月20日 13:00~19:00						
		2000年7月20日							
	対象道路網	概ね主要地方道、県							
	7.3 外是叫响								
	ネットワーク規 模	ノード数 	146	数	398	起終点ノード数	38	総トリップ数	130355
		一般街路ネットワーク	7	交差点 数	Į	信号交差点数	0*	道路区間数	162
		自専道ネットワーク		分岐部 数	_	出入口数	1	道路区間数	1
	特記事項	信号交差点は分岐容	}岐容量に換算して表現している						
					X.		<i>></i> /\		
	送吸 ご ね	単路部	リンク長、車公は容易	草線数、容	量、自由流	允旅行速度	>/\ 		
	道路 データ	交差点部	リンク長、車分岐容量	草線数、容	量、自由流	流旅行速度	>/\ 		
	道路 データ	交差点部 合流部	分岐容量				~= t = :	- Z)	
	道路 データ 	交差点部 合流部 設定パラメータ	分岐容量			流旅行速度 「スプリット」相当の分岐	容量を与え	₹る)	
 入力デ		交差点部 合流部 設定パラメータ 作成方法	分岐容量	(「飽和交			容量を与え	₹る)	
		交差点部 合流部 設定パラメータ 作成方法 設定単位	分岐容量 設定しない OD 交通量	(「飽和交	通流率」×	「スプリット」相当の分岐			
	信号制御	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法	分岐容量 設定しない OD 交通量 主要交差点	(「飽和交 iiにおける	通流率」× 感知器デ-	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ	ベル)を月	引いてOD推定	
		交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位	分岐容量 設定しない OD 交通量 主要交差点 道路密度、	(「飽和交気における)	通流率」× 感知器デ-	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ	ベル)を月		- - ンでは 1km 四方程度
入力デ ータ	信号制御	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位	分岐容量 設定しない OD 交通量 主要交差点 道路密度、 1時間単位	(「飽和交」	通流率」× 感知器デ- にあわせて	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー	ベル)を月	引いてOD推定	
	信号 制御 一 交通需要	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位	分岐容量 設定しない OD 交通量 主要交差点 道路密度、	(「飽和交」	通流率」× 感知器デ- にあわせて	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー	ベル)を月	引いてOD推定	 一ンでは 1km 四方程度
	信号 制御 交通需要 その他	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位	分岐容量 設定しない OD 交通量 主要交変度、 1時間位 1車種2属	(「飽和交 点における 人口密度 性(経路固	通流率」× 感知器デー にあわせて に層、経路	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー 各選択層)	ベル)を月	引いてOD推定	
	信号 制御 交通需要 その他 スキャン方式	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位	分岐容量 設定しない OD 交通量 主要交差点 道路密度、 1時間単位 1車種2属f	(「飽和交 点における 人口密度 性(経路固 an 方式,3	通流率」× 感知器デー にあわせて に層、経路	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー 各選択層)	ベル)を月	引いてOD推定	 -ンでは 1km 四方程度
一 タ	信号 制御 交通需要 その他	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位	分岐容量 設定しない OD 交通量 主要交変度、 1時間位 1車種2属	(「飽和交 点における 人口密度 性(経路固 an 方式,3	通流率」× 感知器デー にあわせて に属、経路	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー 各選択層)	ベル)を月	引いてOD推定	
ータ 	信号 制御 交通需要 その他 スキャン方式	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位	分岐容量 設定しない OD 交通量 主要交差点 道路密単位 1車種2属 periodic sc: 3 台/パケ	(「飽和交 (「飽和交 人口密度 性(経路固 an 方式,3	通流率」× 感知器デー にあわせて 定層、経路 秒/1スキ	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー 各選択層)	·ベル)をF -ンでは 2	引いてOD推定 00m 四方程度、大きいゾ・	ーンでは 1km 四方程度
ータ 	信号 制御 交通需要 その他 スキャン方式 パケットサイズ	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位	分岐容量 設定しない OD 交通量 主要交差点 道路密単位 1車種2属 periodic sc: 3 台/パケ	(「飽和交 (「飽和交 人口密度 性(経路固 an 方式,3	通流率」× 感知器デー にあわせて 定層、経路 秒/1スキ	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー 各選択層)	·ベル)をF -ンでは 2	引いてOD推定 00m 四方程度、大きいゾ・	—ンでは 1km 四方程度
ータ 	信号 制御 交通需要 その他 スキャン方式 パケットサイズ 経路選択原理 特記事項	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位 車両属性区分	分岐容量 設定しない OD 交通量 主要交変度、 1時間程2属 periodic sc: 3 台/パケ 旅行時間を	(「飽和交 はにおける 人口密度 性(経路固 an 方式,3 ット	通流率」× 感知器デー にあわせて 定層、経路 秒/1スキ	「スプリット」相当の分岐 一タ(断面交通量、渋滞レ て適切に判断、小さいゾー 各選択層)	·ベル)をF -ンでは 2 分毎に更	引いてOD推定 00m 四方程度、大きいゾ・	ーンでは 1km 四方程度
- 夕 - デア定 1	信号 制御 交通需要 その他 スキャン方式 パケットサイズ 経路選択原理	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位 車両属性区分	分岐容量 設定しない OD 交通量 主要交密度、 1時種2属 periodic sca 3 台/パケ 旅行時間を 交差点部の	(「飽和交 (「飽和交 (における 人口密度 性(経路固 コカナー) コストにし ()方向別交	通流率」× 感知器デー にあわせて 1定層、経路 秒/1スキ た確率的額	「スプリット」相当の分岐 ータ(断面交通量、渋滞レて適切に判断、小さいゾー 各選択層) そヤン 経路配分(Dial 配分)、5	·ベル)をF -ンでは 2 分毎に更新	月いてOD推定 00m 四方程度、大きいゾ・	
ータ モン デン デン 現性	信号 制御 交通需要 その他 スキャン方式 パケットサイズ 経路選択原理 特記事項 キャリブレーショ	交差点部 合流部 設定パラメータ 作成方法 設定単位 作成方法 空間単位 時間単位 車両属性区分	分岐容量 設定しない OD 交交を選進 直接は 1時種2属 periodic sc: 3 台/パケ 旅行時間を 交感知	(「飽和交 (「飽和交 はにおける 人口密度 性(経路固 an 方式3 ツト コストにし つ方向別交	通流率」× 感知器デーにあわせて にあわせて 対力 1スキー た確率的が	「スプリット」相当の分岐 一タ(断面交通量、渋滞して適切に判断、小さいゾー 各選択層) デヤン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測	·ベル)をF -ンでは 2 分毎に更新	引いてOD推定 00m 四方程度、大きいゾ・	
ータ モデ定 ル項 性	信号 制御 交通需要 その他 スキャットサイズ 経路事項 キャリブレーショ 大会 対策を関 を表する。	交差点部 合流部 設定パラメータ 作成方法 設定成方法 空間単位 時間単位 車両属性区分	分岐容量 シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シ	(「飽和交 (「飽和交 人 大 (経 (経 (経 (経 (経) (入 (入 (、 入 (、 入 (入 (入 (入 (入 (入	通流率」× 感知器デーにあわせて にあわせて はアースキー た確率的に 通容の断距 向別交通	「スプリット」相当の分岐 一タ(断面交通量、渋滞して適切に判断、小さいゾー 各選択層) そヤン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測 量を用いた検証	·ベル)をF -ンでは 2 分毎に更新	月いてOD推定 00m 四方程度、大きいゾ・	
ータ Eデ定 現現 性	信号 制御 交通需要 その他 スキャン方式 パケットサイズ 経路選択原理 特記事項 キャリブレーショ	交差点部 合流部 設定パラメータ 作成方法 設定成方法 空間単位 時間単位 車両属性区分	分 し 立 立 立 立 の の の の の の の の の の の の の	(「飽和交流における度はいからなりでは、これでは、経の方が、これでは、方がをはないでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	通流率」× 感知器デースを対した。 通節向 アータより	「スプリット」相当の分岐 一タ(断面交通量、渋滞して適切に判断、小さいゾー 各選択層) デヤン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測	·ベル)をF -ンでは 2 分毎に更新	月いてOD推定 00m 四方程度、大きいゾ・	
ー E设言 再食 出タ デ定 現証 カル項 性	信号 制御 交通需要 その他 スキャンサイズ 経路 事項 キャン 検証 用データ取	交差点部 合流部 設定パラメータ 作成方法 設定成方法 空間単位 時間単位 車両属性区分	分 し 立 立 立 立 立 立 の 立 の の の の の の の の の の の の の	(「飽和交流」) (「飽和で、) (「におりで、) (経 方) () () () () () () () () ()	通流率」× 感に 定 秒 た 通節向デヤス 経路 カース 本 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年	「スプリット」相当の分岐 ータ(断面交通量、渋滞レて適切に判断、小さいゾー 各選択層) ・・・ン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測 量を用いた検証 取得したものを利用	·ベル)をF -ンでは 2 分毎に更新	月いてOD推定 00m 四方程度、大きいゾ・	
入一 モ設目 再検 出デカタ デ定 現証 カー ・	信号 制御 交通需要 その他 スキケッ 選択 項 キャット	交差点部 合流部 設定パラメータ 作成方法 設定成方法 空間単位 時間単位 車両属性区分	od 対 のD 主 道 のD 主 のD 要 のD 要 のD のD 要 のの のの のの のの のの のの のの のの のの	(「飽和交」 (「飽和交」 (「飽和水」 (「飲和水」 (「飲和水」 (「のなりまする)」 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりも)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりまする)。 (「のなりなりなりなりなりなりなりなりなりなりなりなりなりなりなりなりなりなりなり	通流率」× 感に 定 秒 た 通 箇 向 デック	「スプリット」相当の分岐 一タ(断面交通量、渋滞して適切に判断、小さいゾーな選択層) そマン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測 量を用いた検証 取得したものを利用 ・ベルより推定	·ベル)をF -ンでは 2 分毎に更新	月いてOD推定 00m 四方程度、大きいゾ・	
ー モ設目 再検 出データ デ定 現証 カール項 性 ター	信号 制御 交通需要 その他 スキケッ 選択 項 キャット	交差点部 合流部 設定パラメータ 作成方法 設定成方法 空間単位 時間単位 車両属性区分	on on on on on on on on on on	(「飽和文 (「飽和 な) (「 に な) な) (「 に な) な) (「 に な) な) (「 な) な) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大	通流率」× 感に 定 秒 た 通 箇 向 デック	「スプリット」相当の分岐 ータ(断面交通量、渋滞レて適切に判断、小さいゾー 各選択層) ・・・ン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測 量を用いた検証 取得したものを利用	·ベル)をF -ンでは 2 分毎に更新	月いてOD推定 00m 四方程度、大きいゾ・	
ー モ設目 再倹 出タ デ定 現証 カリ項 性	信号 制御 交通需要 その他 スキケッ 選択 項 キャット	交差点部 合流部 設定パラメータ 作成方法 設定成方法 空間単位 時間単位 車両属性区分	on on on on on on on on on on	(「飽和交」 (「飽和交」 (「飽和な)」 (「飲和な)」 (「飲和な)」 (「飲和な)」 (「かった) (「かった)」 (「かった)」 (「かった)」 (「かった) (「かった)」 (「かった) (「かっ) (「か) (「か) (「か) (「か) (「か) (「か) (「か) (「か	通流率」× 感に 定 秒 た 通 箇 向 デック	「スプリット」相当の分岐 一タ(断面交通量、渋滞して適切に判断、小さいゾーな選択層) そマン 経路配分(Dial 配分)、5 =SFR×スプリットに相当 面交通量、渋滞長が観測 量を用いた検証 取得したものを利用 ・ベルより推定	·ベル)をF -ンでは 2 分毎に更新	用いてOD推定 00m 四方程度、大きいゾー 新	