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Abstract: This paper introduces a framework to estimate road network traffic conditions by fusing probe and detector data 
into traffic simulations. In this traffic simulation, the trajectories of some vehicles are controlled by the observed probe 
vehicles, then the speed reductions of these vehicles propagate according to the kinematic wave theory. In addition, the 
origin-destination matrix is calibrated using a mathematical model so that the errors in the estimated link traffic volumes 
from the detector data can be minimized. By applying this framework, the traffic conditions on the Tokyo Metropolitan 
Expressway Network were estimated. By comparing the estimation results with the observation, it was confirmed that the 
estimation showed a good accuracy in terms of link traffic volumes, and traffic congestion at the typical bottlenecks could 
be reasonably represented to some extent. 
 

1. Introduction 

The Tokyo Metropolitan Expressway Network in 

Japan has developed for a long time since the 1960s. First, 

radial roads were constructed to make the surrounding areas 

accessible to the metropolitan centres, currently the ring 

roads that connect these radial roads have been mostly 

completed [1]. Since various routes will become available 

for road users after the completion of this radial-ring 

expressway network, it will be more important to utilize ITS 

technologies, such as dynamic route guidance or congestion 

charges, to realize a more efficient road network operation. 

In order to implement such operational measures, it is 

essential to understand traffic conditions in a network, 

which means not only traffic flows and speeds of individual 

sections but also traffic flow distributions from each origin 

to destination. It will allow road network operators to 

recognise where congestion happens, where vehicles within 

the congestion come and go, and where and how they can 

alleviate congestion by encouraging vehicles to detour.  

However, existing detectors (or sensors) give us 

limited information about traffic flows and speeds at 

specific sites. Since these detectors are not so densely 

located on some sections, e.g., 1 or less in 5 km, this 

information is not enough to understand traffic flow 

distribution conditions over a whole network. On the other 

hand, we are recently able to obtain some probe data by 

vehicle-infrastructure cooperative system so-called “ETC 

2.0 system” in Japan. Although the number of probe 

vehicles is still limited, this data contains a series of time 

and position (longitude and latitude) information of probe 

vehicles for every 200 m, which tells us where and when 

they reduced their speeds. It is expected that we will able to 

estimate traffic conditions in more detail by fully utilizing 

these different kinds of data.  

Therefore, the objective of this research is to develop 

a framework to estimate road network traffic conditions by 

fusing probe and detector data into mesoscopic traffic 

simulations. In the simulation, vehicles are generated and 

attracted according to the time-varying origin and 

destination matrix (hereafter referred to as “OD matrix”), 

which cannot be directly observed and therefore is estimated 

by calibrating the initial OD matrix using the observed link 

traffic counts from detector data. Then positions of the 

vehicles are estimated by incorporating the time-space 

trajectories of probe vehicles into the fundamental diagram 

of traffic flow based on the variational theory developed by 

Daganzo [2]. This can give us information about traffic 

conditions where detectors are not installed, as well as 

traffic flow distributions, which are not limited for probe 

vehicles. 

So far, the framework has been developed for 

performing post evaluations of an operational measure by 

comparing estimated traffic conditions before and after 

implementation, thus all data was collected and inputted 

offline. However, it is also applicable to real-time traffic 

monitoring if all the data is connected online in the future. 

This will contribute to realizing effective road network 

management by implementing some operational measures 

based on dynamic traffic conditions. 

The following parts of this paper consist of a 

literature review and the position of this research (section 2), 

an explanation of the methodology (section 3), a case study 

to verify how much accurately traffic conditions are 

estimated by the proposed methodology (section 4) and 

finally the conclusion and future work (section 5). 

2. Literature Review 

Previous studies ([3] ~ [8]) have already developed 

the frameworks for estimating and/or monitoring road 

network traffic conditions by inputting observed data into 

traffic simulations. In the traffic simulations, the most 
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important tasks are estimation of demand (i.e., OD matrix) 

and calibration of supply parameters (i.e., fundamental 

diagram). 

In most of the existing frameworks, the OD matrix is 

estimated or calibrated according to the observed traffic 

volumes by some detectors and/or sensors based on typical 

traffic conditions. For example, Dynasmart-X [3], DynaMIT 

[4], and Aimsun Live [5] select the OD matrix based on the 

database that contains the relationship between OD matrices 

and observed traffic volumes by detectors and/or sensors in 

the past on the highway and motorway network. HEROINE 

[6] and RISE [7], which were developed by the urban 

expressway companies in Japan, utilize the onramp traffic 

volumes directly for calibrating OD matrix between the 

onramps and off-ramps. The calibration is based on the 

historical pattern of OD matrix considering the day of the 

week and other factors with the temporary changes of the 

observed onramp traffic volumes.  

In order to apply these frameworks ([3] ~ [7]), it is 

necessary to obtain a historical pattern of OD matrices. 

However, it needs a large amount of data and thus is very 

difficult, since we cannot observe ODs of all vehicles in 

general. Besides, the Tokyo Metropolitan Expressway 

Network, which is our subject to study, has not been 

completed yet; some of the sections are still under 

construction. Thus, the historical patterns of OD matrices 

may not be applicable due to the openings of new sections in 

the future.  

Without using the historical patterns of OD matrices, 

for another example, since road administrators have recently 

been able to obtain the OD matrix of vehicles that use the 

electric toll collection (ETC) system in Japan, Hirai, et al. 

[8] utilized this data for estimating the OD matrix of all 

vehicles (including the ones which pay tolls in cash, not 

through the ETC system) on the entire inter-urban 

expressway network. This OD matrix of ETC users was 

called “ETC-OD matrix”. Because users of the ETC system 

accounted for about 90% of all expressway users, the ETC-

OD matrix could be a good initial input for estimating the 

OD matrix of all users. Since this approach does not need 

historical pattern of OD matrices but can fully utilize the 

data available for road administrators, it was also adopted in 

our study. 

On the other hand, the calibration of supply 

parameters had been conventionally achieved though the 

analysis on the bottleneck capacities on expressways by 

using historical detector data, as also incorporated in the 

above study [8]. However, it also requires plenty of data, 

since supply parameters vary by road geometry (e.g., 

number of lanes, lane width, gradient) as well as day of the 

week, weather condition, ambient lighting condition, type of 

road users (e.g., long-distance traffic or commuter traffic), 

etc. Instead of calibrating the parameters to these 

influencing factors, many of the above-mentioned 

frameworks ([3] ~ [7]) use observed speed data by detectors 

and/or sensors. The use of actually observed data is 

advantageous also in grasping the congestion caused by not 

only fixed bottlenecks but also some temporary incidents 

(i.e., traffic crashes or falling objects on roads) that cannot 

be calibrated in advance.   

In our study, we focused on the use of probe data, 

because the detectors and/or sensors are sometimes located 

with large spacing (for example, 5~10 km) especially on 

intercity expressways in Japan, only detector data is not 

precise enough for detecting congestions. From this 

viewpoint, probe data had a great advantage because it 

contains continuous speed information with denser spacing 

as far as probe vehicles are driving on the roads.  

The utilization of probe data is one of the most 

substantial challenges in traffic estimation. For example, 

Work et al. [9], Herring et al. [10] showed the applicability 

of probe data for estimating travel time (or travel speed). 

Choi and Chung [11] developed a data fusion technique to 

combine probe and detector data for more reliable and 

accurate estimation. While most of the existing studies 

including above used only travel time (or travel speed) 

information of probe vehicles, Mehran et al. [12] proposed a 

methodology to utilize individual vehicle trajectories (time-

space) based on Daganzo’s variational theory [2] for 

estimating trajectories of other vehicles at the corridor level. 

This approach has the great extensibility to utilize what 

probe data contains, not only time-space but also vehicle 

type for example in the future research. Therefore, our study 

was aimed to incorporate this approach for calibrating the 

supply parameters into network simulations. 

3. Methodology 

3.1. Subject network 
The subject road network was a whole expressway 

network in the Tokyo metropolitan area as illustrated in Fig. 

1. It has 1599.7 km for both directions covering the area of 

about 1.1×10
4
 km

2
, consisting of 2214 links in Digital Road 

Map (DRM) [13]. As shown in the figure, the network is 

outlined by three ring roads (C2, C3, and C4) and several 

radial roads with 29 junctions. This allows road users to 

choose several routes, especially when passing through the 

metropolitan area from and to outside the outer ring road 

(C4). 

The three different colours in Fig. 1 stand for the 

companies that are in charge of construction, operation, and 

management for these expressway sections: Metropolitan 

Expressway Co., Ltd., (MEX) for the central part, Central 

Nippon Expressway Co. Ltd., (NEXCO Central) for the 

west part, and East Nippon Expressway Co., Ltd., (NEXCO 

East) for east and north part.  

 
Fig. 1. Expressway network in the Tokyo Metropolitan 

area with route numbers (dotted lines means under 

construction as for 2017) 
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3.2. Overview of traffic estimation process 
In this research, traffic conditions were estimated 

using a traffic simulator with different kinds of observed 

data. Fig. 2 shows the flowchart of the whole estimation 

process.  

The estimation process consisted of two steps. At the 

first step, we calibrated the OD matrix, which was one of the 

most important inputs for traffic simulations. The OD matrix 

in this study must specify the traffic demands between the 

onramps and off-ramps on the subject expressway network 

during each time interval. In order to obtain the OD matrix, 

we prepared an initial OD matrix based on the ETC-OD 

matrix, and calibrated it through the iterative process of 

traffic simulation and minimization of the errors in link 

traffic volumes from the detector data.  

By inputting the calibrated OD matrix at the first step, 

we carried out the traffic simulation with ETC 2.0 probe 

data at the second step. Actually, the iteration at the first 

step also included traffic simulations as shown in Fig. 2, but 

these were done without the probe data. 

3.3. Data 
As stated, three kinds of data were utilized in this 

framework: detector data, ETC- OD matrix and probe data. 

The following subsections introduce them in detail.  

 

3.3.1 Detector data: In total, 408 detectors were installed 

in the subject network; that is, on average for every 300-

600 m on the expressways under MEX and at least one 

between every on/off-ramps (about 5~10 km) on the 

expressways under NEXCO Central and East. With these 

detectors, we obtained traffic volume and average spot 

speeds aggregated once every 5 minutes for two categories 

of vehicle types (i.e., passenger cars and heavy vehicles).  

Several types of detectors were used at different sites, 

for example, inductive loop detectors, ultrasonic detectors, 

and video image processor detectors. From them, we 

excluded detectors with errors and missing records, and the 

detectors that seemed inaccurate when comparing traffic 

counts with upstream and downstream detectors in the data 

cleansing process.  

 

3.3.2 ETC-OD matrix: As briefly mentioned in section 2, 

the ETC-OD matrix was the OD matrix of ETC users which 

specified the traffic volumes between the onramps and off-

ramps during each time intervals. This matrix was calculated 

in each of the three expressway companies (MEX, NEXCO 

East, and NEXCO Central) by aggregating the records of 

times when vehicles passed through the tollgates located at 

onramps, off-ramps, or boundary junctions between 

different expressways with the ETC on-board units 

(including ETC 2.0 on-board units that are explained in 

3.3.3).  

In this research, we first combined these matrices 

into one matrix in order to make the ETC-OD matrix in the 

whole subject network with the aggregation intervals of 15 

minutes for each type of vehicles (passenger cars or heavy 

vehicles). Here, several assumptions were made about 

diverging and merging volumes at boundary junctions where 

expressways under different companies intersect. 

Then, we approximately converted it into the 

OD matrix of all vehicles by multiplying the elements by the 

inverse of the average percentage of ETC users in the 

expressway companies according to their destination off-

ramps. The ETC system in Japan has been in operation 

nationwide since 2001, and the percentage of ETC users is 

currently almost 90% among all expressway users.  

The OD matrix obtained in the above procedure was 

used for the initial OD matrix in Fig. 2. Since this procedure 

was done with several simplifications, the initial OD matrix 

would not be accurate enough for estimating dynamic traffic 

conditions. That was why the optimization was further 

carried out as shown in Fig. 2.  

 

3.3.3 Probe data: Probe data was obtained from the ETC 

2.0 system. The ETC 2.0 system is a vehicle-infrastructure 

cooperative system using the DSRC (Dedicated Short Range 

Communications) between ETC 2.0 on-board units and 

roadside units. The system has been deployed nationwide by 

the Ministry of Land, Infrastructure, Transport and Tourism 

since 2011. While the ETC system was only for electric toll 

collection, the ETC 2.0 system had additional functions of 

dynamic route guidance, safe driving assistance, and probe 

data collection.  

In the probe data collection of the ETC 2.0 system, 

time and position (longitude and latitude) information of 

each probe vehicle is recorded and accumulated in its on-

board unit every 200 m or when its direction changed 

45 degrees or more as illustrated in Fig. 3. Then, the 

accumulated data is uploaded when probe vehicles passed 

by roadside units, which are generally set every 10~15 km 

on intercity expressways and 4 km on urban expressways on 

 
Fig. 2. Flowchart of the whole estimation process 

 

 
Fig. 3 schematic image of travel record in probe data 

by ETC2.0 system 
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average. The roadside units send the data to the central 

server, and finally the central server connects the data of 

each probe vehicle downloaded by different roadside units 

for every day in order to make continuous trajectories of 

probe vehicles. For more information, please refer to the 

report [15].  

Although the use of the ETC 2.0 system is gradually 

increasing year by year, it is still limited in total traffic 

volume. On average, we can collect probe data from about 

2~3% of all vehicles traversing the subject expressways. For 

example, probe data was collected from 40 vehicles, which 

accounted for 3.3% of the total 1,221 vehicles on one 

section of the E1 expressway (bound for Tokyo, upstream of 

Yokohama-Machida IC) during the evening peak from 

16:00 to 16:15 on Sunday, 5
th

 June, 2016.  

3.4. Traffic simulation 
In the main part of the estimation process, we 

simulated traffic with the existing simulator, namely 

SOUND (Simulation On Urban road Network with Dynamic 

route choice; [16], [17]), which had been developed by i-

Transport Lab. Co., Ltd., by adding a special function for 

incorporating probe data. Fig. 4 shows the general flowchart. 

SOUND is a mesoscopic traffic simulator dealing with 

discrete vehicles with 1-second update intervals. In this 

simulation, vehicles are generated according to the 

OD matrix, and their movements are simulated by the traffic 

flow model and route choice model in the following way.  

 

3.4.1 Traffic generation: Traffic was randomly generated 

at every time step (i.e. 1 second) from onramps according to 

a 15-minute OD matrix. Here, the OD matrix was updated 

during the calibration step as explained in subsection 3.5 in 

detail. 

 

3.4.2 Traffic flow model: SOUND estimates the number of 

vehicles and the positions of individual vehicles on each link 

at every time step according to the fundamental diagram. 

Here, a simple fundamental diagram is assumed as shown in 

Fig. 5. It is defined by link capacity 𝑞𝑐 and jam density 𝑑𝑗. 

In a free-flow regime (blue line in Fig. 5), forward wave 

speed, which is the angle from the horizontal axis, decreases 

from free-flow speed 𝑣𝑓  to critical speed 𝑣𝑐  as density 

increases. In a congested flow regime (red line in Fig. 5), 

backward wave speed 𝑤 is calculated as follows. 

𝑤 =
𝑞𝑐

𝑘𝑗−
𝑞𝑐

𝑣𝑐
⁄

   (1) 

In SOUND, expressways are segmented into links on 

which vehicles are conserved (no entry and exit exist). Then 

the number of vehicles on each link is first calculated as 

follows: 

In principle, each vehicle is put into the list of free-

flow states when entering into a link, and transferred into the 

list of ready-to-discharge states after spending the link travel 

time by free-flow speed, which is expressed by 𝐿/𝑣𝑓 where 

𝐿  denotes link length, while keeping the first-in-first-out. 

Then, vehicles in the list of ready-to-discharge states can 

move to the downstream link according to the cumulative 

arrival flow curve, which is obtained by applying Newell’s 

simplified kinematic wave theory [18]. 

Fig. 6 illustrates an example of the cumulative flow 

diagram of a link. The cumulative arrival-demand flow 

curve A* is determined by the cumulative number of 

vehicles in the list of ready-to-discharge states of an 

upstream link (blue solid line). On the other hand, for its 

downstream link, the cumulative discharge flow curve D at 

its downstream end is drawn with the slope of its link 

 
Fig. 4. Flowchart of traffic simulation  
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Fig. 6. Estimation of cumulative arrival flow  

 

 
Fig. 7. Impact of a probe vehicle trajectory 

 

link capacity
qc

flow

density

free-flow speed
vf

jam density kj

critical speed
vc

back wave
speed w

cumulative flow

time

discharge flow 
D

arrival demand
flow A*

L/w

kjL

qc

arrival flow A

D’

distance

time
t t+Δt

w

Q

Q+1

Q

Q+1

Q+kjwΔt

wΔt

Δx

cumulative 
traffic volume



5 

 

capacity 𝑞𝑐  (red solid line). Because of backward wave 

propagation, the acceptable cumulative flow curve D’ at the 

upstream end of this link can be obtained by shifting the 

curve of D with 𝐿/𝑤  to the right and 𝑘𝑗𝐿  to the top (red 

dotted line). Finally, the cumulative arrival flow curve A is 

the minimum of A* and D (black solid line).  

After that, with the given boundary of the cumulative 

number of vehicles at the downstream end of each link, the 

positions of individual vehicles inside the link are calculated 

one by one from the downstream to upstream by applying 

Daganzo’s variational theory [2]. Since not only the 

downstream end of links but also the observed vehicle 

trajectories of probe vehicles can be regarded as boundaries, 

we could incorporate probe data in this simulation. Fig. 7 

illustrates how to estimate the position of the following 

vehicle based on the leading vehicle trajectory. As shown in 

Fig. 7, when the cumulative traffic volume of the leading 

vehicle is 𝑄 at time 𝑡, that of the vehicle at 𝑤∆𝑡 downstream 

of the leading vehicle at time 𝑡 + ∆𝑡  is calculated as 

𝑄 + 𝑘𝑗𝑤∆𝑡. Assuming the vehicles are linearly distributed 

between them, SOUND estimates the position of the 

following vehicle of which the cumulative traffic volume is 

𝑄 + 1 at time 𝑡 + ∆𝑡.  

The parameters for determining a fundamental 

diagram are traffic capacity 𝑞𝑐 , jam density 𝑘𝑗 , free-flow 

speed 𝑣𝑓  and critical speed 𝑣𝑐 . Usually they need to be 

calibrated especially at bottlenecks based on empirical 

analysis, so that congestion phenomena can be reasonably 

represented. However, since this approach requires a large 

amount of empirical data, these parameters were uniformly 

set according to Table 1 in this research. Instead of 

calibrating these parameters, probe data was incorporated 

for representing congestion.  

 

3.4.3 Incorporation of probe data: Specifically, in this 

simulation, we controlled the speeds of some vehicles so 

that they could precisely track the observed trajectories of 

probe vehicles. Then, the speed reduction of a probe vehicle 

influenced the following vehicles as explained in 3.4.2. As a 

result, this triggered congestion in the simulation. 

If the number of probe vehicles was not so small, 

most of the traffic congestion was captured by this approach. 

Furthermore, although it is outside the focus of this paper, 

by using this approach, it becomes possible to grasp the 

congestion caused by not only fixed bottlenecks but also 

some temporary incidents (i.e., traffic crashes or falling 

objects on roads) that cannot be calibrated in advance. This 

is the great advantage of incorporating probe data, especially 

for further development of a real-time traffic monitoring 

system. 

 
3.4.4 Route choice model: SOUND assumes that road 

users have perfect information and choose their routes 

dynamically based on updated travel time and tolls of their 

alternative routes every fifteen minutes. Thus, user route 

choice probability is formulated by the logit model as 

follows. 

𝑝𝑗 =
exp(−𝜃𝑐𝑗)

∑ exp(−𝜃𝑐𝑘)𝐽
𝑘=1

   (2) 

𝑐𝑗 = 𝛼 × 𝑡𝑖𝑚𝑒𝑗 + 𝛽 ×
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗

𝑣𝑓𝑗
+ 𝛾 × 𝑡𝑜𝑙𝑙𝑗    (3) 

Where, 𝑝𝑗: probability to choose route 𝑗, 𝐽: total number of 

available routes, 𝑐𝑗 : cost of route 𝑗, 𝑡𝑖𝑚𝑒𝑗 : expected travel 

time of route 𝑗 based on link travel time of the current time 

step (every fifteen minutes) , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗: distance of route 𝑗, 

 𝑣𝑓𝑗: free-flow speed of route 𝑗, 𝑡𝑜𝑙𝑙𝑗: toll of route 𝑗, 𝜃: route 

choice sensitivity parameter and 𝛼, 𝛽 and 𝛾: coefficients. 

Coefficients  𝛼, 𝛽 and 𝛾 were set as listed in Table 2. 

These coefficients were estimated based on the observed 

trajectories of the ETC 2.0 probe vehicles (for dependent 

variables) and route travel times from the detector data (for 

independent variables) by the maximum likelihood method. 

The data used for this estimation was observed during June 

of 2016 and 2017, which contains the trajectories of 

1,034,542 vehicles in total (i.e., 380,370 vehicles in 2016 

and 654,172 vehicles in 2017).  

In the above estimation, the impact of tolls 

represented by the coefficient 𝛾 could not be estimated. This 

was because tolls are determined by only origins and 

destinations regardless of routes for almost of OD-pairs in 

the subject network after April 2016 until today; in other 

words there was no difference in tolls when drivers chose 

their routes. Here, it should be noted that there was an 

exception in the toll policy that tolls on the routes using 

MEX’s sections costed higher than other routes for several 

OD-pairs, in order to reduce number of vehicles penetrating 

the centre of the metropolitan area. However, the impact of 

this exception could not be reflected in the model due to the 

lack of the detailed toll data. In addition, please note that the 

above-mentioned toll policy has been applied only for ETC 

users (about 90% of all vehicles) in reality, but the model 

was applied for all users in the simulation for simplicity. 

3.5. Calibration of OD matrix using detector data 
The OD matrix was calibrated using detector data as 

Table 2 Coefficients of the route choice model 

Vehicle type Passenger cars Heavy vehicles 

Weekday/end Weekday Weekend Weekday Weekend 

𝛼 0.240 0.242 0.257 0.341 

𝛽 0.330 0.311 0.219 0.181 

𝛾 - - - - 

𝜃 0.064 0.064 0.055 0.055 

Note: “-“ means not available 

 

Table 1 parameters of the links 

(a)MEX 

Parameters 6-lane 4-lane IC and JCT 

𝑞𝑐 [pcu/h/lane] 2200 2200 2000 

𝑘𝑗  [pcu/km/lane] 80 

𝑣𝑓 [km/h] 100 80 60 

𝑣𝑐 [km/h] 60 54 36 

(b)NEXCO East and Central 

Parameters 4-/ 6-lane 2-lane IC and JCT 

𝑞𝑐 [pcu/h/lane] 2400 2000 2000 

𝑘𝑗  [pcu/km/lane] 80 

𝑣𝑓 [km/h] 100 80 60 

𝑣𝑐 [km/h] 70 54 36 
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shown in Fig. 2. That means the OD matrix was iteratively 

revised in order to minimize the sum of errors in estimated 

link traffic volumes from the observed volumes in detector 

data. 

For this calibration, we used the mathematical model, 

which had been proposed by Kobayashi et al. [19] and 

applied by Hanabusa et al. [14]. The advantage of this 

approach was that the number of iterations could be 

drastically reduced. The previous application to the entire 

Japan expressway network [14] needed only three to five 

simulation runs to converge the results. This was important 

since it took time to run traffic simulation. 

This model minimizes the sum of errors in estimating 

link traffic volume 𝐸, which is expressed by the following 

equation. 

𝐸 = ∑ ∑ (𝑞𝑖,𝑡 − 𝑞𝑖,�̂�)
2

𝑡𝑖    (4) 

Where, 𝑞𝑖,𝑡 : the estimated traffic volume of link 𝑖  in time 

step 𝑡 in the simulation, 𝑞𝑖,�̂�: the observed traffic volume of 

link 𝑖 in time step 𝑡 from detectors. 

In the above equation, although 𝑞𝑖,𝑡  cannot be 

generally obtained without running the simulation, it is 

mathematically expressed with the relation to OD traffic 

volumes as follows. 

𝑞𝑖,𝑡 = ∑ ∑ 𝑝𝑖,𝑡
𝜔,𝜏𝑄𝜔,𝜏

𝜏𝜔    (5) 

𝑝𝑖,𝑡
𝜔,𝜏 =

𝑞𝑖,𝑡
𝜔,𝜏

𝑄𝜔,𝜏   (6) 

Where, 𝑄𝜔,𝜏: traffic volume of OD pair 𝜔 that departed in 

time step 𝜏 , 𝑝𝑖,𝑡
𝜔,𝜏

: probability that a vehicle of OD pair 𝜔 

that departs in time step 𝜏 passes link 𝑖 in time step 𝑡 , 𝑞𝑖,𝑡
𝜔,𝜏

: 

the estimated traffic volume of OD pair 𝜔 that departed in 

time step 𝜏 passed link 𝑖 in time step 𝑡 in the simulation. 

Assuming a binary choice for the logit model (c.f., 

equation (2)), 𝑝𝑖,𝑡
𝜔,𝜏

 is also expressed by the following 

equation. 

𝑝𝑖,𝑡
𝜔,𝜏 =

1

1+𝑒𝑥𝑝(−𝜃∆𝑐𝑖,𝑡
𝜔,𝜏)

   (7) 

Where,  ∆𝑐𝑖,𝑡
𝜔,𝜏

: difference in costs for a vehicle of OD pair 𝜔 

that departed in time step 𝜏 passing link 𝑖 in time step 𝑡 from 

passing aother link under the alternative routes.  

By substituting equation (7) into (5), 𝑞𝑖,𝑡 is expressed 

as a function of 𝑄𝜔,𝜏 (subject for this calibration), 𝜃 (given 

parameter from Table 2) and ∆𝑐𝑖,𝑡
𝜔,𝜏

 as follows. 

𝑞𝑖,𝑡 = ∑ ∑
𝑄𝜔,𝜏

1+𝑒𝑥𝑝(−𝜃∆𝑐𝑖,𝑡
𝜔,𝜏)

𝜏𝜔    (8) 

Generally, it is difficult to obtain ∆𝑐𝑖,𝑡
𝜔,𝜏

. In this model, 

∆𝑐𝑖,𝑡
𝜔,𝜏

 is estimated by solving the simultaneous equations (6) 

and (7), assuming that ∆𝑐𝑖,𝑡
𝜔,𝜏

 is calculated by the simulation 

result and constant while optimizing𝑄𝜔,𝜏. 

∆𝑐𝑖,𝑡
𝜔,𝜏 = −

1

𝜃
ln (

𝑄𝜔,𝜏

𝑞𝑖,𝑡
𝜔,𝜏 − 1)   (9) 

As a result, equation (4) becomes differentiable at 

𝑄𝜔,𝜏 with the following constraints. 

𝑄𝜔,𝜏 ≥ 0   (10) 

∑ 𝑄𝜔,𝜏
𝜏 = 𝑄𝜔   (11) 

Where, 𝑄𝜔: total traffic volume of OD pair𝜔. 

3.6. Output 
In order to evaluate operational measures, it is 

necessary to see the impacts with several indices at different 

scale, because some measures may have a positive impact 

on a certain section but a negative impact on a whole 

network, and vice versa. For example, link speeds and link 

traffic volumes are necessary to see congested conditions of 

individual road sections; on the other hand, we also need to 

calculate the total delay in a whole network. Because the 

proposed framework in this study could simulate 

movements of all vehicles on a network, these indices could 

be calculated at various scales. 

Furthermore, as mentioned in chapter 1, the purpose 

of traffic estimations in this research was to understand 

traffic flow distributions that make it possible to think about 

how to operate road networks more efficiently by diverging 

some traffic into alternative routes. For this purpose, the 

proposed framework could calculate route-sharing rates for 

any route of an arbitrary OD pair by dividing the number of 

subject OD traffic volumes that used the subject route by the 

total OD traffic volume. This is one of the most important 

outputs of the proposed framework, since it cannot be 

directly obtained by the observed data in most of the routes 

and OD pairs.   

4. Validation 

This section introduces a validation to see whether 

the simulated results can reasonably represent actual traffic 

conditions or not.  

4.1. Outline of the estimated scenarios 
We estimated traffic conditions on Monday, 6

th
 June 

in 2016 and Monday, 5
th

 June in 2017 using the observed 

probe and detector data on these days.  

The average percentages of ETC users were as listed 

in Table 3 during the study periods. We used this values to 

convert the ETC-OD matrix into the initial OD matrix as 

explained in 3.3.2.  

As mentioned already, tolls were determined by only 

origins and destinations regardless of routes. That resulted in 

the route choice model used in this study insensitive to tolls 

as shown in 3.4.4. Therefore, we did not input tolls for all 

links in the simulation. 

Table 3 percentage of ETC users (passenger cars) 

Month MEX NEXCO East NEXCO Central 

Jun. 2016 94.7 89.6 91.8 

Jun. 2017 95.5 88.9 92.2 
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We used a personal computer with Intel Core i7-

5820K 3.30 Ghz CPU, SSD 128 GB. In order to get the 

results converged, we needed to repeat the process of 

calibration of OD matrix two times. That means, in total, we 

run the traffic simulation three times (two times during the 

calibration of the OD matrix and one time with probe data 

incorporation). It took approximately 10 hours in total: 

2.5 hours for running the traffic simulation and 1.1 hours for 

estimating the OD matrix by the iteration with the 

mathematical model respectively. Although the calculation 

time could be shortened by applying the mathematical 

model for the estimation of the OD matrix as mentioned in 

subsection 3.5, it was still long. That must be improved in 

the future work. 

4.2. Estimation of link speeds and traffic volumes 
Link speeds and link traffic volumes were the most 

fundamental outputs of the traffic estimations, which could 

be used for other indices such as the total delay. Therefore, 

in order to verify the simulated results, these estimated 

values were compared with the ones observed by detectors.  

 
4.2.1 Link speed: Fig. 8 and Fig. 9 are examples of the 

speed contours which show 5-minute link speeds on sections 

of the E1 expressway and the E4 and S1 expressways where 

congestion often occurred. The speeds in the upper figures 

(a) were observed by detectors and the ones in the lower 

figures (b) were estimated by the simulator. 

We found that congestion, where the link speeds 

were lower (indicated by reddish colour in the speed 

contours), could be represented in the simulation mostly at 

the same location and time with the observed data. For 

example, in Fig. 8, the congestion that happened from the 

mainline tollgate and the JCT for the C2 expressway in the 

morning and evening hours were indicated in both 

observation and estimation. However, the link speeds were 

estimated much lower than the observation especially after 

the beginning of the congestion from the JCT for the 

C2 expressway in the morning. This happened because 

sometimes there was a difference in travel speeds by lane, 

especially at merging and diverging sections; in other words, 

sometimes one lane was congested while the other was not 

congested depending on which direction these lanes were 

connected. Because the differences in traffic conditions by 

lane could not be considered in the traffic flow model 

applied in the simulation, if one probe vehicle was driving 

on a congested lane, the speed reduction was reflected on 

the cross-section even though the other lane were not 

congested. Such kinds of overestimations of speed 

reductions were also found on other sections, typically 

around merging and diverging sections. 

On the other hand, the beginning of the congestion in 

the evening in Fig. 8 delayed about 10 minutes in the 

simulation from the observation. For another example, in 

Fig. 9, the link speeds in the morning from the JCT for the 

C2 expressway were overestimated. One of the reasons of 

these examples was because speed reductions in this 

simulation were triggered by those of probe vehicles only. 

Therefore congestion did not occur in the simulation until a 

probe vehicle reached the actual congested section, and 

speed reductions were less reflected if there were few probe 

vehicles.  

In addition, in Fig. 9, we found that the estimated 

link speeds during uncongested periods did not agree with 

the observed speeds on the S1 expressway (the upper part of 

the figure). This was because the free-flow speeds were 

simply inputted as listed in Table 1, and not calibrated 

considering the geometry and other influencing factors of 

each link. 

As a whole network, Fig. 10 shows the distributions 

of the estimated link speeds according to the observed link 

speeds for every 10 km/h in all links. As shown in Fig. 10, 

link speeds were overestimated in many links, especially 

when the observed speeds were low. This implied that 

 

 
a 

 
b 

Fig. 8. Comparison of speed contours: the E1 

expressway on 5th June, 2017 (a) observed by detectors 

and (b) estimated by simulator 

 

 
a 

 
b 

Fig. 9. Comparison of speed contours: the E4 and S1 

expressways on 6th June, 2016 (a) observed by detectors 

and (b) estimated by simulator 
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congestion and speed reductions were not sufficiently 

represented in the simulation because of the reasons 

mentioned above. 

 
4.2.2 Link traffic volume: Fig. 11 shows the scatter 

diagram of the observed and estimated link volumes. We 

found that traffic volumes were well estimated in general 

although there were still some links with over- and 

underestimations.  

Fig. 12 shows the correlation coefficients between 

the estimated and observed link traffic volumes by time of 

day of the two scenarios in 2016 and 2017. The result 

showed that the estimated link traffic volumes were highly 

correlated with the observed volumes in all the time units, 

but actually there were some fluctuations. Because link 

speeds were over- and underestimated on some sections as 

shown in 4.2.1, it must affect the estimation of link traffic 

volumes, too though both the traffic flow model and the 

route choice model. Analysis in more detail (e.g., difference 

in accuracy by traffic flow level, impact of the number of 

probe vehicles) needs to be conducted to identify the reasons 

in order to improve the accuracy of the estimated results. 

5. Conclusion 

In this research, we developed the framework to 

estimate traffic conditions by fusing probe and detector data 

into traffic simulations, and applied it on the Tokyo 

Metropolitan Expressway Network. By comparing the 

estimation results with the detector data, it was confirmed 

that the estimation showed a good accuracy in terms of link 

traffic volumes. Traffic congestion at the typical bottlenecks 

could be reasonably represented to some extent. 

However, the link speeds were likely to be 

underestimated especially at merging and diverging 

bottlenecks, but also overestimated in many cases. Against 

this issue, more analysis in detail in each bottleneck needs to 

be conducted in order to identify the causes of low accuracy 

considering the impact of the number of prove vehicles and 

make necessary improvement for each section. Besides, the 

impact of such errors in link speeds on the accuracy of the 

estimated traffic volumes needs to be investigated.  

Furthermore, in the current framework, the impact of 

tolls cannot be taken into account because it was not 

included in the route choice model. We would like to 

improve this by obtaining the detailed toll data and 

analysing the impact of tolls in detail for each OD pairs, so 

that the framework will be applicable to evaluate the impact 

of changing tolls.  

After these validation and improvements, we would 

like to conduct case studies to evaluate the operational 

measures. 
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